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An unsteady multiblock multigrid scheme for lifting forward
�ight rotor simulation
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SUMMARY

Numerical simulation of multi-bladed lifting rotors in forward �ight is considered. The �ow-solver
presented is multiblock and unsteady, which is essential for forward �ight, and also includes multigrid
acceleration to reduce run-times. A structured multiblock grid generator speci�cally for rotor blades has
also been developed and is presented here. Previous work has shown that hovering lifting rotor �ows
are particularly expensive to simulate, since the capture of the vortical wake below the disc requires
a long numerical integration time; more than 20 revolutions for an unsteady simulation, or more than
40 000 time-steps for a single grid steady simulation. It is demonstrated here that only two or three
revolutions are required to obtain a converged solution for forward �ight, since the wake is swept
downstream. This requires less than 1:5× the run-time of a steady hovering simulation, for the same
grid density around each blade, even though an unsteady simulation is required and the complete disk
must be solved rather than one blade as in hover. It is demonstrated that very �ne meshes are required
to capture the unsteady tip vortex motion, and the e�ects on blade loading of blade–vortex interaction
and rotor shaft inclination are also considered. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of the �ow about a helicopter rotor places severe demands on a CFD
code, due to the non-linear, highly three dimensional, and unsteady �ow regime. Hover simula-
tion requires the accurate capture of the vortical wake over several turns, to obtain the correct
wake in�uence on the blade loading. Forward �ight simulation also requires accurate capture
of the vortical wake, but this is now unsteady, and can easily be di�used by the numerical
scheme. Hence, hover can be simulated with a steady code, but a very long integration time
is required for the wake to develop, while forward �ight requires a more expensive unsteady
code but, since the wake is swept downstream, a shorter numerical integration time should be
necessary. The requirements on the numerical mesh are fundamentally di�erent for a rotary-
wing �ow than a �xed-wing �ow, since the vortical wake capture requires a much higher grid
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974 C. B. ALLEN

density away from the surface than for a �xed-wing case, where far-�eld mesh and solution
are normally of little signi�cance and so this, combined with the long integration time, means
rotary-wing run-times can be impractical. Hence, these �ows are ideal for parallelization [1]
and=or a multigrid approach to reduce run-times [2].
Hovering �ight can be simulated as a steady problem, in a blade-�xed rotating co-ordinate

system, but forward �ight will always require a full unsteady simulation. Furthermore, forward
�ight also requires a multiblock mesh (if using structured meshes), whereas hover can be
simulated with a single block mesh. Previous work [3–5] has shown that hovering solutions on
multiblock meshes exhibit sharper wake resolution and better convergence than on single block
meshes with similar numbers of points, due to the increased grid quality. It was also shown
that simulating hovering �ow with an unsteady scheme was signi�cantly more expensive than
with a steady solver (in a blade-�xed rotating co-ordinate system). More than 20 revolutions
were required for convergence, which required almost six times the CPU time of the steady
solution. However, it was summised that this was a feature of the case, wherein many turns
of the wake need to be captured before convergence, and that forward �ight would be cheaper
since the wake is swept downstream and capture of many turns is not essential. This paper
examines this supposition, by considering numerical simulation of lifting forward �ight using
an unsteady �ow-solver with multiblock meshes.
It has been demonstrated previously [7] that the numerical dissipation used by central-

di�erence schemes has a signi�cant e�ect on hovering solutions, in terms of wake capturing
and hence convergence rate. An upwind Euler solver is used in the current work, since this
accurately models the physics of the �ow, in terms of characteristic behaviour, and so is
naturally dissipative. A �nite-volume solver is presented, based on the �ux-vector splitting of
Van-Leer [8].
In this paper, the unsteady �ow-solver is presented, followed by grid generation aspects for

structured multiblock grids for rotors in forward �ight. Numerical solutions for two-bladed
rotors in forward �ight are then presented and examined. Tip vortex trajectories, and the
in�uence of the vortical wake on the loading of the following blade is also considered.

2. UNSTEADY SOLVER

For forward �ight simulation a full unsteady simulation is essential. The Euler equations in
integral form for a mesh rotating in a �xed axis system are

d
dt

∫
V
U dV +

∫
@V
F:n dS=0 (1)

where

U=




�

�u

�v

�w

E



; F=




�[q − (�× r(t))]
�u[q − (�× r(t))] + Pi
�v[q − (�× r(t))] + Pj
�w[q − (�× r(t))] + Pk
E[q − (�× r(t))] + Pq




(2)
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In the above V is the domain, @V the domain boundary, n the outward unit normal, and dS
an elemental area of the boundary. The co-ordinate vector r(t)=[x; y; z]T(t) is time dependent
in the �xed axis system, i.e.

r(t)= [R(t)][x; y; z]T(0) (3)

where [R(t)] is the time-dependent rotation matrix. The z-axis is taken as the rotation axis
here, and so

[R(t)]=




cos(�zt) sin(�zt) 0

− sin(�zt) cos(�zt) 0

0 0 1


 (4)

The equation set is closed by

P=(�− 1)
[
E − �

2
q2

]
(5)

2.1. Spatial discretization

A �nite-volume upwind scheme is used to solve the integral form of the Euler equations
(Equation (1)), since by correctly modelling the characteristic behaviour of the �ow upwind
schemes are naturally dissipative. The �ux-vector splitting of Van-Leer [8, 9] is used.
The �ux integral for each cell is evaluated by de�ning a local orthogonal axis system at

each cell face, and summing the upwinded components. The upwind interpolations are com-
puted using a third-order spatial interpolation [11]. High-order schemes su�er from spurious
oscillations in regions of high-�ow quantity gradients, and so a �ux limiter is required, and
the continuously di�erentiable one due to Anderson et al. [11] was chosen.
To avoid introducing errors due to the evaluation of the rotational terms, the local (�× r)

terms are evaluated by solving for cell face area moment vectors, and satisfying the result-
ing conservation condition [10, 2, 6]. (More details of the spatial scheme can be found in
References [2, 6].)

2.2. Implicit time-stepping scheme

An implicit form of the di�erential equation for each computational cell is considered,

@(Vn+1Un+1)
@t

+R(Un+1)=0 (6)

where V is the time-dependent cell volume and R is the upwinded �ux integral. The implicit
temporal derivative is then approximated by a second-order backward di�erence, following
Jameson [12]. However, the computations are started by moving the blade into a stationary
�uid, and so a small initial time-step is required. This time-step can be increased during the
computation, so a variable time-step scheme is adopted. �tn+1 is the time-step from time
level n to n+1, and �tn the time-step from time level n− 1 to n. The ‘pseudo-time’ formu-
lation is used to reduce the unsteady problem to a series of steady problems. A multi-stage
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time-stepping scheme is then used to converge the solution at each real time step. For example
integrating from pseudo-time-level m to m+ 1, the scheme would be

Um+�j =Um − �j ��V n+1

{
Tn+1Vn+1Um+�j−1 − TnV nUn

+Tn−1Vn−1Un−1 +
6∑
k=1

[R]−1k [ �F
+
(U+)m+�j−1

k + �F
−
(U−)m+�j−1

k ]An+1k

}
(7)

where

Tn+1 =
(2�tn+1 +�tn)

(�tn+1 +�tn)�tn+1
(8)

Tn =
(�tn+1 +�tn)
�tn+1�tn

(9)

Tn−1 =
�tn+1

(�tn+1 +�tn)�tn
(10)

and �0;1;2;3 = 0; 14 ;
1
2 ; 1. k represents the six cell faces, �� is the pseudo-time-step, [R] is the

local rotation matrix, �F
±
are the upwinded �ux components, and A the cell face area. There is

no limit to the size of the real time step that can be taken and this leads to a large reduction
in CPU time compared to an explicit scheme [13–15]. The time step is limited by accuracy
rather than stability, which is the reason small time-steps are used at the beginning of the
computation. This approach means that the instantaneous grid positions and speeds, and the
geometric quantities (normal vectors, area moment vectors, etc.), only have to be recomputed
once every real time-step, and remain constant during the pseudo-time iterations. As there is
no blade motion, i.e. no motion in addition to the rigid rotation, accounted for here, the cell
volumes are constant for this case.

2.3. Multigrid scheme

Explicit time-stepping schemes lend themselves well to multigrid acceleration, see for example
References [16, 17]. In this approach, errors computed on the �nest mesh are transferred to
progressively coarser meshes to compute the corrections to the �ne mesh solution. As larger
time-steps are allowed on the coarser meshes, errors are propagated out of the domain faster
than is possible on the �ne mesh, resulting in faster convergence. It has been shown previously
that multigrid is e�ective for hovering rotors using a steady approach [2, 6]. An unsteady solver
is used here, but an explicit-type solver is used within each real time-step, and so multigrid
should also be e�ective here.
The scheme is presented here using N to represent the mesh number (N =1 is �nest),

V is the cell volume, Û and Ũ represent the restricted and smoothed (updated) solution
respectively, and IN and IN are the number of iterations performed on mesh N in the
decreasing and increasing mesh density directions. R is used to represent the
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residual, i.e.

R(Um+�j−1 ;Un;Un−1) = Tn+1Vn+1Um+�j−1 − TnV nUn

+Tn−1Vn−1Un−1 +
6∑
k=1
[R]−1k

[F
+
(U+)m+�j−1

k + F
−
(U−)m+�j−1

k ]An+1k (11)

Then for a simple ‘V’ cycle, the scheme can be written as (these operations are performed
for every cell)

DO FOR NB=1→NBLOCK
Perform I1 iterations (smoothing sweeps) on mesh 1 (�nest)

Um+�j1 =Um1 − �j �t
V n+1N

R(Um+�j−1

1 ;Un1;U
n−1
1 ); j=1 : : : 3

⇒ Ũ1
set f1 = 0

DO FOR N =2→NMESH
Restrict solution to next �nest mesh (̂ is meaningless for N =1)

ÛN =
∑8

cell=1ŨN−1Vn+1N−1∑8
cell=1V

n+1
N−1

, Û
n
N=

∑8
cell=1Û

n
N−1V

n+1
N−1∑8

cell=1V
n+1
N−1

, Û
n−1
N =

∑8
cell=1Û

n−1
N−1V

n+1
N−1∑8

cell=1V
n+1
N−1

Evaluate forcing function

fN =RN (ÛN ; Û
n
N ; Û

n−1
N )− ∑8

cell=1{RN−1(ŨN−1; Û
n
N−1; Û

n−1
N−1)− fN−1}

Perform IN iterations on mesh N

Um+�jN =UmN − �j �t
V n+1N

(RN (U
m+�j−1

N ; Û
n
N ; Û

n−1
N )− fN ); j=1 : : : 3

⇒ ŨN
ENDDO
DO FOR N =NMESH − 1→ 1

Compute corrections on coarser mesh
�UN+1 = ŨN+1 − ÛN+1

Pass, prolong, corrections to current mesh
⇒ �UN

ŨN = ÛN +�UN
Perform IN iterations on mesh N

Um+�jN =UmN − �j �t
V n+1N

(RN (U
m+�j−1

N ; Û
n
N ; Û

n−1
N )− fN ); j=1 : : : 3

⇒ ŨN
ENDDO

ENDDO

It has been shown previously [6] that a V-cycle with relaxed trilinear prolongation operator
is the most e�ective scheme for the single block steady version of current code, and that was
also found for multiblock and unsteady simulations.
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Table I. Boundary condition tags.

−1 Solid surface (include in loads calculation)
0 Solid surface
1 Far �eld
2 Internal face
3 Periodic downstream
4 Periodic upstream

At block and domain boundaries, suitable values of �U are prescribed in halo cells, such
that the relevant boundary conditions are satis�ed and the same trilinear interpolation scheme
can be used for every point.
It should be noted here that the multiblock nature means that fewer levels are possible.

Only four mesh levels were used here even though 4 million points are used. Five or six
levels could be used for 4 million points in a single block grid.

2.4. Boundary conditions

The solver is coded such that each block boundary has a boundary condition tag (listed in
Table I), a neighbouring block number, and an orientation �ag. The only restriction applied
is that a boundary can only have one type of tag. This was done primarily to avoid possible
connectivity/index problems when extending the code to include multigrid.
Tags 2, 3, and 4 require a neighbouring block number and orientation �ag. At upper, lower,

and spanwise far-�eld boundaries, characteristic based conditions are applied, accounting for
moving boundary speeds.

3. GRID GENERATION

Hovering �ight can be modelled using a single block mesh, as only one blade need be
considered, see for example References [2, 3, 6]. However, forward �ight simulation requires a
multiblock mesh and, furthermore, it was shown in References [3, 4] that multiblock solutions
exhibit better convergence and wake capturing than single block solutions.
The multiblock grid is generated by �rst generating a small extent blade-�xed C-H grid

around the solid surface. This is generated in a similar manner to a single block grid, i.e.
incorporating a periodic transformation [18, 3], but with a variable fraction of the disk and
a small far-�eld distance. From this near blade grid, which has a rectangular type far �eld,
cylindrical grids are generated upstream, downstream, above and below the blade to �ll the
required domain. This domain is a (1=N )th part cylinder, where N is the number of blades.
A trans�nite interpolation algorithm [19, 20] is used to compute the grid within each block.

After generating the entire mesh an elliptic smoothing is applied [21]. The smoothing has
been coded such that boundaries are also smoothed (for more details of the grid generation
see References [5, 18]). The cylinder is then completed by rotating the computed mesh to �ll
the entire cylinder.
The major di�erence between meshes for hover and forward �ight cases is representation

of the hub. In the hovering case, it is simple to have the hub (small radius cylinder at the
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root of all blades) running to the far-�eld boundaries above and below the blades, as there
is no �ow through it. That is not the case in forward �ight, since there is �ow through this
region. The solid surface is taken to around one chord above and below the blades, and then
the hub regions above and below the blades are �lled by generating cylindrical meshes. A
transformation is then applied to make the top and bottom of the solid surface spherical.
The geometry considered in the next section is that of the well-known Caradonna–Tung

two-bladed rotor [22]. This is a rotor with no twist or taper, with a constant NACA0012
section. The hovering case has aspect ratio six, and blade incidence of 8◦, and this is a
standard test case. Hence, a forward �ight simulation was also performed with this rotor.
Plate 1(a) shows the solid surface used, i.e. the two blades and hub, and Plate 1(b) shows
the solid surface mesh and block boundaries. The surface mesh on each blade is 129× 65,
and the local blade-attached mesh 129× 65× 33. There are 36 blocks associated with each
blade, and eight blocks above the hub and eight below, giving a total of 88 blocks, and
around 4.0 million points in total. The grid density below the rotor disk is smaller than used
for hover, since the wake is swept downstream rather than downwards. Plate 2(a) shows the
block boundaries and the domain, and (b) shows the solid surface and the midplane. Plate
3(a) shows the solid surface plus selected planes near the blade tip, and block boundaries,
and (b) the grid in the rotor disc. The far �eld for the mesh is set at 15 chords spanwise and
20 chords vertically, i.e. a cylinder of radius 15 chords, height 40 chords.

4. VALIDATION

The code was �rst validated for a simple forward �ight case, the non-lifting Caradonna–Tung
case, with aspect ratio 7 [23]. As wake capturing was unimportant here, the same blade-�xed
mesh density was used, i.e. 129× 65× 33 local volume mesh, but coarser blocks away from
the blades. The block topology was the same, with 88 blocks and total number of points of
around 1:4× 106.

4.1. Non-lifting results

The case simulated was MTip = 0:8 and �=0:2. Here � is the advance ratio, or MFF=MTip.
This was run with 60 time-steps per rotation, i.e.

�t=
2�
60�z

(12)

and the initial time-step was 1
5 of this, and was increased to the constant value over the �rst

10 time-steps.
Plate 4 shows surface relative Mach contours on the blade and hub solid surface, at 30◦

intervals, on the third revolution. The forward �ight velocity of the rotor is in the negative
x direction. (The simulations presented here and later are actually run by spinning the entire
rotor mesh at �z with a freestream on�ow velocity of (�MTip; 0; 0).)
Figure 1 shows computed pressure coe�cient compared to experimental data [23]. The data

is all for the radial station r=R=0:89. This shows excellent agreement.
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Figure 1. Numerical and experimental pressure coe�cient.

5. LIFTING RESULTS

A lifting forward �ight test case was run with the Caradonna–Tung two-bladed rotor. The
standard hovering geometry was used, i.e. aspect ratio 6, 8◦ blade incidence. The tip Mach
number was set at 0.7, and the advance ratio, �, set to 0.2857, i.e. a 0.2 forward �ight Mach
number. Again 60 real time-steps were used per revolution.
The lifting cases considered here are not representative of a real rotor, where the pitch

would vary around the azimuth to trim the rotor. The consideration of a correctly trimmed
rotor is the next stage of the research, but the current results are presented to demonstrate the

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:973–984



AN UNSTEADY MULTIBLOCK MULTIGRID SCHEME 981

Figure 2. Force coe�cient variation for one blade.

developed technology both in terms of grid generation and �ow-solver, to examine the blade
load variations, and consider wake capturing implications for forward �ight simulations.
Plate 5 shows blade and hub upper surface relative Mach contours (57 contours are plotted

between 0.0 and 1.5). The solution is at �=3 intervals over the third revolution.
It is interesting to consider the load variation on each blade around the azimuth. A force

coe�cient for each blade is de�ned as

CL=
Fz

1
2 �(�RTip)

2RTipc
(13)

where Fz is the force on the blade in the z direction. This is clearly related to the thrust
coe�cient, but will be labelled a lift, or load, coe�cient to avoid confusion with the common
use of thrust coe�cient, which is normally taken as a value for the complete rotor for each
�ight condition.
Figure 2 shows the load history for one blade over four revolutions. Zero degrees is taken

as pointing along the x-axis, i.e. away from the forward �ight direction, and the simulation is
started from the 90◦ position. The loss of loading due to the interaction of the blade with the
tip vortex from the previous blade is clearly demonstrated here. The variation shows that the
solution, in terms of blade loads, is periodic on the second revolution. Clearly, more than this
may be needed to consider, for example, main rotor-tail rotor wake interaction but for blade
loads the second revolution may be taken as the converged solution. This is to be expected,
as the forward �ight velocity means the wake is swept downstream. This is in sharp contrast
to hovering simulations, where at least twenty revolutions were needed for the wake below
the disc to develop over several turns [4].
Plate 6 shows the vorticity �eld when the lead blade is at 150◦, 210◦, and 270◦ rotation

(VFF shows the forward �ight direction of the rotor.) This shows both the tip vortex path and
the variation of tip vortex strength around the azimuth. The tip vortex shed on the advancing
side is signi�cantly stronger than on the retreating side. It is also worth noting that the vortex
appears to be di�used, both in terms of strength and size, fairly quickly even though there
are 4 million points. This has serious implications if main vortex-tail vortex interaction is to
be simulated.
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Figure 3. Force coe�cient variation for one blade. shaft inclined 10◦.

5.1. More realistic case

The previous case was run with forward �ight direction normal to the rotor axis, i.e. there is
no mechanism to generate forward thrust. As a more representative case, the previous case
was run with the rotor shaft inclined forward at 10◦ to the z-axis, i.e. 17% of the thrust is in
the forward direction, and the e�ect on the loading considered. Figure 3 shows the leading
blade load coe�cient history. As expected the loading is decreased due to the inclination and
also, since the wake is swept further below the following blade, the loss of loading is less
signi�cant than in the previous case. Again the loading is periodic after the �rst revolution
of the simulation.

5.2. Computational requirements

These simulations were run using 60 time-steps per revolution. With this time-step, using four-
level multigrid, an average of around 70 e�ective pseudo-time-steps per real time step were
required for convergence. This means that for two revolutions 120 time-steps were performed
with 4 million points. This equates to around 3:3× 1010 cell updates for a converged solution,
whereas a two-bladed hovering solution using the steady form of the solver, also with four-
level multigrid, required around 9000 time-steps with 2.5 million points, i.e. 2:3× 1010 cell
updates. Hence, forward �ight simulation is only around 1:5× the cost of hovering simulation
for similar grid density around each blade, even though an unsteady solver must be used
and the complete domain simulated. The entire simulation required around two weeks on a
single EV6 500 MHz processor on a Compaq UNIX machine. (The code is currently being
parallelized.)

6. CONCLUSIONS

Numerical simulation of multi-bladed lifting rotor �ows in forward �ight has been presented.
An implicit unsteady multiblock multigrid scheme has been developed and validated, and used
to compute forward �ight test cases. A structured multiblock grid generation algorithm for
rotors has also been presented.
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For hovering rotor solutions it has been shown previously that over 20 revolutions need
to be computed for convergence, as the vortical wake must be captured below the blades.
However, it is demonstrated here that much fewer revolutions need to be computed in the
forward �ight case as the wake is swept downstream away from the blades, so the slow
wake development demonstrated for hover is not a problem. In the cases considered here,
only two revolutions are required, and this means forward �ight is only around 1:5× the cost
of a steady hover simulation, even though an unsteady solver is required, and the complete
rotor disk, including the hub regions, must be meshed. (The memory requirement is doubled,
though.)
Results show the blade loading variation around the azimuth, the tip vortex path, and the

e�ect the tip vortex has on blade loading. The disturbance in loading due to the in�uence
of the vortex is shown to be signi�cantly reduced when the rotor shaft is inclined forward.
However, it is also demonstrated that the vortex di�uses fairly quickly behind each blade, and
so to simulate the e�ects of the wake on the fuselage and=or the tail rotor is likely to require
much �ner meshes than considered here.
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Plate 1. (a) Solid surface, (b) solid surface mesh and block boundaries.

Plate 2. Block boundaries and solid surface and midplane.

Plate 3. Solid surface and selected planes near tip and grid in rotor disc.
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Plate 4. Solid surface relative mach contours.
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Plate 5. Solid surface mach contours over one revolution.

Plate 6. Vorticity �eld with lead blade at 150◦, 210◦, 270◦.
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